Problem 1. Find the solution of the equation

\[9y'' - 30y' + 9y = 0 \]

with the initial data

\[y(0) = 1 \quad \text{and} \quad y'(0) = 0. \]

Then, do the same for the initial data

\[y(0) = 0 \quad \text{and} \quad y'(0) = 1. \]

Finally find the Wronskian of the two solutions you found before.

Solution: We first look at the polynomial

\[9\lambda^2 - 30\lambda + 9 = 3(3\lambda^2 - 10\lambda + 3) = 3(3\lambda - 1)(\lambda - 3). \]

The roots are \(\lambda = \frac{1}{3} \) and \(\lambda = 3. \) The general solution is

\[y(t) = \alpha_1 e^{\frac{t}{3}} + \alpha_2 e^{3t}. \]

We first find \(y_1(t) \) under the conditions

\[y_1(0) = \alpha_1 + \alpha_2 = 1 \]

and

\[y'_1(0) = \frac{\alpha_1}{3} + 3\alpha_2 = 0. \]

We solve this system to find \(\alpha_1 = \frac{9}{8} \) and \(\alpha_2 = -\frac{1}{8}. \) The first solution is

\[y_1(t) = \frac{9}{8} e^{\frac{t}{3}} - \frac{1}{8} e^{3t}. \]

For the second solution we seek \(y_2(t) \) under the conditions

\[y_2(0) = \alpha_1 + \alpha_2 = 0 \]

and

\[y'_2(0) = \frac{\alpha_1}{3} + 3\alpha_2 = 1. \]

We solve this system to find

\[\alpha_1 = -\frac{3}{8} \quad \text{and} \quad \alpha_2 = \frac{3}{8}. \]
The second solution is
\[y_2(t) = -\frac{3}{8}e^{\frac{t}{3}} + \frac{3}{8}e^{3t}. \]

To compute the Wronskian of these two functions we first recall that
\[W(t) = \begin{vmatrix} y_1(t) & y_2(t) \\ y'_1(t) & y'_2(t) \end{vmatrix}, \]
or we can also remember that \(W(t) \) satisfies the equation
\[W'(t) = -p(t)W(t). \]

Here \(p(t) \) is comes from writing the equation in the form
\[y'' + p(t)y' + q(t)y = 0. \]
In other words, \(p(t) = -\frac{10}{3} \). Furthermore, we have the initial data for \(y_1 \) and \(y_2 \), which gives us
\[W(0) = \begin{vmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 0 & 1 \end{vmatrix} = 1. \]

This altogether means that \(W(t) \) satisfies
\[W' = -\frac{10}{3}W \]
along with \(W(0) = 1 \). We can solve this first order linear equation by various methods to find
\[W(t) = e^{-\frac{10t}{3}}. \]

Problem 2. Find the solution of
\[y'' + 12y' + 85y = 0 \]
that also satisfies \(y(0) = 4 \) and \(y'(0) = 6 \).

Solution: The polynomial associated to this equation is
\[\lambda^2 + 12\lambda + 85 = (\lambda + 6)^2 + 49. \]

Hence the general solution is
\[y(t) = \alpha_1e^{-6t}\cos(7t) + \alpha_2e^{-6t}\sin(7t). \]

Then we impose
\[y(0) = \alpha_1 = 4, \]
\[y'(0) = -6\alpha_1 \cos(7t) + \alpha_2(-6\cos(7t) + 7\sin(7t)) = 6. \]
and

\[y'(0) = -6y(0) + 7\alpha_2 = 6, \]

so \(\alpha_2 = \frac{30}{7} \). The solution is

\[y(t) = 4e^{-6t} \cos(7t) + \frac{30}{7}e^{-6t} \sin(7t). \]

Problem 3. Find the solution of the equation

\[36y'' + 12y' + 50y = 0 \]

that also solves

\[y(1) = 4 \quad \text{and} \quad y'(1) = 6. \]

Solution: The polynomial associated to the equation is

\[36\lambda^2 + 12\lambda + 50 = (6\lambda + 1)^2 + 49. \]

The general solution is

\[y(t) = \alpha_1 e^{-\frac{1}{6}t} \cos(7t) + \alpha_2 e^{-\frac{1}{6}t} \sin(7t). \]

We now impose the initial data as follows:

\[y(1) = \alpha_1 e^{-\frac{1}{6}} \cos(7) + \alpha_2 e^{-\frac{1}{6}} \sin(7) = 4 \]

and

\[y'(1) = -\frac{1}{6}y(1) + 7e^{-\frac{1}{6}}(-\alpha_1 \sin(7) + \alpha_2 \cos(7)) = 6. \]

We obtain the system

\[\alpha_1 \cos(7) + \alpha_2 \sin(7) = 4e^{\frac{1}{6}}, \]

and

\[- \sin(7)\alpha_1 + \cos(7)\alpha_2 = \frac{20}{21}e^{\frac{1}{6}}.\]

We solve this system for instance by multiplying the first equation by \(\cos(7) \), the second by \(\sin(7) \) and subtracting, to obtain

\[\alpha_1 = e^{\frac{1}{6}}(4 \cos(7) - \frac{20}{21} \sin(7)). \]

Then we multiply the first equation by \(\sin(7) \), the second by \(\cos(7) \) and then add the equations to obtain

\[\alpha_2 = e^{\frac{1}{6}}(4 \sin(7) + \frac{20}{21} \cos(7)). \]
We obtain the following solution:

\[y(t) = e^{\frac{1}{6}}(4 \cos(7) - \frac{20}{21} \sin(7))e^{-\frac{t}{6}} \cos(7t) + e^{\frac{1}{6}}(4 \sin(7) + \frac{20}{21} \cos(7))e^{-\frac{t}{6}} \sin(7t). \]

We can re-arrange this solution as follows. First, put the exponentials together like this:

\[y(t) = (4 \cos(7) - \frac{20}{21} \sin(7))e^{-\frac{(t-1)}{6}} \cos(7t) + (4 \sin(7) + \frac{20}{21} \cos(7))e^{-\frac{(t-1)}{6}} \sin(7t). \]

Then, we re-arrange the sines and cosines as follows:

\[y(t) = e^{-\frac{(t-1)}{6}} \left(4(\cos(7) \cos(7t) + \sin(7) \sin(7t)) + \frac{20}{21}(\sin(7t) \cos(7) - \cos(7t) \sin(7))\right). \]

Then we recall that

\[\cos(\alpha + \beta) = \cos(\alpha) \cos(\beta) - \sin(\alpha) \sin(\beta), \]

and

\[\sin(\alpha + \beta) = \sin(\alpha) \cos(\beta) + \cos(\alpha) \sin(\beta). \]

Because of this we can re-write our solution as

\[y(t) = e^{-\frac{(t-1)}{6}} \left(4 \cos(7t - 7) + \frac{20}{21} \sin(7t - 7)\right). \]

In other words, our solution is

\[y(t) = 4e^{-\frac{(t-1)}{6}} \cos(7(t - 1)) + \frac{20}{21}e^{-\frac{(t-1)}{6}} \sin(7(t - 1)). \]

It is interesting to notice that our initial data were

\[y(1) = 4 \quad \text{and} \quad y'(1) = 6, \]

and it turned out that our solution looks as

\[y(t) = y^*(t - 1) \]

where

\[y^*(t) = 4e^{-\frac{t}{6}} \cos(7t) + \frac{20}{21}e^{-\frac{t}{6}} \sin(7t) \]

solves the equation

\[36y'' + 12y' + 50y = 0 \]

along with the initial data

\[y(0) = 4 \quad \text{and} \quad y'(0) = 6. \]

This is a general principle. Whenever we solve the equation

\[y^{(n)} + \alpha_{n-1}y^{(n-1)} + \ldots + \alpha_1y' + \alpha_0y = 0 \]
along with the initial data

\[y(t_0) = y_0, \quad y'(t_0) = y_1, \quad \ldots, \quad y^{(n-1)}(t_0) = y_{n-1}, \]

we can first find the solution \(y^* \) of the equation

\[y^{(n)} + \alpha_{n-1} y^{(n-1)} + \ldots + \alpha_1 y' + \alpha_0 y = 0 \]

along with the initial data

\[y(0) = y_0, \quad y'(0) = y_1, \quad \ldots, \quad y^{(n-1)}(0) = y_{n-1}, \]

and then take \(y(t) = y^*(t - t_0) \).

Problem 4. Find the solution of the equation

\[y'' + 2y' - 15y = 0 \]

that also has

\[y(0) = 9 \quad \text{and} \quad y(1) = 2. \]

Solution: First we consider the polynomial associated to the equation:

\[\lambda^2 + 2\lambda - 15 = (\lambda + 5)(\lambda - 3). \]

The general solution is

\[y(t) = \alpha_1 e^{-5t} + \alpha_2 e^{3t}. \]

We now need to apply the conditions

\[y(0) = 9 \quad \text{and} \quad y(1) = 2. \]

Note that these are not initial data, in that they involve two different points, and no derivatives of \(y \), so we cannot apply the principle mentioned in the previous problem. We still impose the conditions at \(t = 0 \) and \(t = 1 \) to obtain

\[\alpha_1 + \alpha_2 = 9 \]

and

\[\alpha_1 e^{-5} + \alpha_2 e^{3} = 2. \]

We solve this system to obtain

\[\alpha_1 = \frac{9e^3 - 2}{e^3 - e^{-5}} = \frac{9e^8 - 2e^5}{e^8 - 1}, \]
and
\[
\alpha_2 = \frac{2e^5 - 9}{e^8 - 1}.
\]

Problem 5. Find the solution of the equation
\[
400y'' + 81y = 0
\]
that also satisfies
\[
y(0) = 6 \quad \text{and} \quad y'(0) = -6.
\]
Solution: We look at the polynomial for the equation
\[
400\lambda^2 + 81,
\]
which has roots \(\lambda = \pm \frac{9}{20}i\). The general solution is
\[
y(t) = \alpha_1 \cos \left(\frac{9}{20}t \right) + \alpha_2 \sin \left(\frac{9}{20}t \right).
\]
We then use the initial data
\[
y(0) = \alpha_1 = 6,
\]
and
\[
y'(0) = \frac{9}{20} \alpha_2 = -6.
\]
We conclude that
\[
\alpha_1 = 6 \quad \text{and} \quad \alpha_2 = -\frac{120}{9} = -\frac{40}{3}.
\]

Problem 6. Find the solution to the equation
\[
y''' - 11y'' + 18y' = 0
\]
along with the initial data
\[
y(0) = 4, y'(0) = 9, y''(0) = 5.
\]
Solution: First the polynomial
\[
\lambda^3 - 11\lambda^2 + 18\lambda = \lambda(\lambda - 2)(\lambda - 9).
\]
The roots are 0, 2 and 9. The general solution is
\[
y(x) = \alpha_1 + \alpha_2 e^{2x} + \alpha_3 e^{9x}.
\]
Next we impose the initial data. This gives us the system

\[\begin{align*}
\alpha_1 + \alpha_2 + \alpha_3 &= 4 \\
2\alpha_2 + 9\alpha_3 &= 9 & \text{and} \\
4\alpha_2 + 81\alpha_3 &= 5.
\end{align*} \]

We can first solve the last two equations separately. This subsystem is

\[\begin{align*}
2\alpha_2 + 9\alpha_3 &= 9 & \text{and} \\
4\alpha_2 + 81\alpha_3 &= 5.
\end{align*} \]

To solve, for instance we multiply the first equation by 9 and subtract the second equation from the first to obtain

\[14\alpha_2 = 76, \]

so

\[\alpha_2 = \frac{38}{7}. \]

Similarly we obtain

\[\alpha_3 = \frac{-13}{63}. \]

Finally we use these two results in the first equation to conclude

\[\alpha_1 = \frac{-67}{63}. \]

Problem 7. Find the solution of the problem

\[y''' + 16y' = 0 \]

that satisfies

\[y(0) = 7, \; y'(0) = 36, \; y''(0) = 64. \]

Solution: The polynomial

\[\lambda^3 + 16\lambda = \lambda(\lambda^2 + 16) \]

has roots 0 and \(\pm 4i \). The general solution is

\[y(x) = \alpha_1 + \alpha_2 \cos(4x) + \alpha_3 \sin(4x). \]

Next we apply the initial data. We obtain

\[y(0) = \alpha_1 + \alpha_2 = 7, \]
\[y'(0) = 4\alpha_3 = 36, \]
and
\[y''(0) = -16\alpha_2 = 64. \]
We have \(\alpha_3 = 9, \alpha_2 = -4 \) and \(\alpha_1 = 11. \)

Problem 7. Find the solution of the problem
\[y^{(4)} - 4y''' + 4y'' = 0 \]
that satisfies
\[y(0) = 12, y'(0) = 13, y''(0) = 4, y'''(0) = 0. \]

Solution: The polynomial
\[\lambda^4 - 4\lambda^3 + 4\lambda^2 = \lambda^2(\lambda - 2)^2 \]
has roots 0 and 2, both with multiplicity 2. The general solution is
\[y(t) = \alpha_1 + \alpha_2 t + \alpha_3 e^{2t} + \alpha_4 te^{2t}. \]
Next we use the initial data:
\[y(0) = \alpha_1 + \alpha_3 = 12, \]
\[y'(0) = \alpha_2 + 2\alpha_3 + \alpha_4 = 13, \]
\[y''(0) = 4\alpha_3 + 4\alpha_4 = 4, \]
and
\[y'''(0) = 8\alpha_3 + 12\alpha_4 = 0. \]
We simplify a bit to get the system
\[\alpha_1 + \alpha_3 = 12 \]
\[\alpha_2 + 2\alpha_3 + \alpha_4 = 13 \]
\[\alpha_3 + \alpha_4 = 1 \]
\[2\alpha_3 + 3\alpha_4 = 0. \]
It is easy to solve the last two equations first. We get
\[\alpha_3 = 3 \text{ and } \alpha_4 = -2. \]
Then we use the first two equations to get
\[\alpha_2 = 9 \text{ and } \alpha_1 = 9. \]